UNIVERSITY PARK, Pa. — As climate change nudges the global temperature higher, there is rising interest in the maximum environmental conditions like heat and humidity to which humans can adapt. New Penn State research found that in humid climates, that temperature may be lower than previously thought.
It has been widely believed that a 35°C wet-bulb temperature (equal to 95°F at 100% humidity or 115°F at 50% humidity) was the maximum a human could endure before they could no longer adequately regulate their body temperature, which would potentially cause heat stroke or death over a prolonged exposure.
Wet-bulb temperature is read by a thermometer with a wet wick over its bulb and is affected by humidity and air movement. It represents a humid temperature at which the air is saturated and holds as much moisture as it can in the form of water vapor; a person’s sweat will not evaporate at that skin temperature.
But in their new study, the researchers found that the actual maximum wet-bulb temperature is lower — about 31°C wet-bulb or 87°F at 100% humidity — even for young, healthy subjects. The temperature for older populations, who are more vulnerable to heat, is likely even lower.
W. Larry Kenney, professor of physiology and kinesiology and Marie Underhill Noll Chair in Human Performance, said the results could help people better plan for extreme heat events, which are occurring more frequently as the world warms.
“If we know what those upper temperature and humidity limits are, we can better prepare people — especially those who are more vulnerable — ahead of a heat wave,” Kenney said. “That could mean prioritizing the sickest people who need care, setting up alerts to go out to a community when a heatwave is coming, or developing a chart that provides guidance for different temperature and humidity ranges.”
Kenney added that it’s important to note that using this temperature to assess risk only makes sense in humid climates. In drier climates sweat is able to evaporate from the skin, which helps cool body temperature. Unsafe dry heat environments rely more on the temperature and the ability to sweat, and less on the humidity.
The study was recently published in the Journal of Applied Physiology.