By shaping the output of light, the diffuser allows astronomers to overcome noise created by the Earth’s atmosphere. “The stable and smooth images delivered by diffusers are essential in minimizing the adverse effects of the turbulent atmosphere on our measurements, and in maximizing our precision,” said Zhao.
"This technology works over a wide range of wavelengths, from the optical — visible by humans — to the near infrared," said Jason Wright, associate professor of astronomy and astrophysics at Penn State and an author of the paper. “As such, diffusers can be used for a wide range of exoplanet science. We can use them to precisely measure the times exoplanetary worlds transit their stars, which will help us measure their masses and compositions, and even find new planets in their systems; and we can use them to study the temperature structures of giant planets' atmospheres."
The research team is already establishing collaborations to implement this technology on other telescopes around the world. “Our goal is to equip the broader exoplanet community with low-cost precision tools to deliver precise measurements to aid future observations in exoplanet science,” said Stefansson.
In addition to Stefansson, Mahadevan, Zhao and Wright, the research team at Penn State includes graduate students Shubham Kanodia, Lea M. Z. Hagen, and Leo J. Liu; undergraduate student Yiting Li; and postdoctoral researchers Thomas Beatty and Paul Robertson. The diffuser development and research team also includes Leslie Hebb, assistant professor of physics at Hobart and William Smith Colleges; John Wisniewski, presidential professor and assistant professor of physics at the University of Oklahoma; Joseph Huehnerhoff, previous instrument engineer at the Apache Point Observatory 3.5m telescope, now an opto-mechanical engineer at Hindsight Imaging, Inc.; Brett Morris, graduate student at the University of Washington; Sam Halverson, NASA Sagan postdoctoral researcher at the University of Pennsylvania; Joseph O’Rourke, postdoctoral researcher at the California Institute of Technology; Heather Knutson, professor of astronomy at the California Institute of Technology; Suzanne Hawley, professor of astronomy at the University of Washington; Chad Bender, associate astronomer at the University of Arizona; Jack Dembicky, Candace Gray and Theodore Rudyk, telescope operating specialists at the Apache Point Observatory 3.5m telescope; Russet McMillan, manager of night operations at the Apache Point Observatory; and William Ketzeback the Apache Point Observatory 3.5m chief telescope engineer.
This research was funded by a Scialog grant from the Research Corporation for Science Advancement (Rescorp) and supported by the Center for Exoplanets and Habitable Worlds, a Leifur Eiriksson Foundation Scholarship, the NASA Earth and Space Science Fellowship Program, the National Science Foundation, and the Penn State Astrobiology Research Center.