Researchers compared the long-term performance of treated wooden and plastic pallets through a detailed, cradle-to-grave life-cycle assessment, and conducted an analysis of treatments required to kill pests such as insects. They investigated and evaluated the environmental impacts of resources consumed and emissions released by wooden and plastic pallets throughout their life cycles.
In the study, the environmental impacts of the pallets were compared on a one-trip basis and 100,000-trips basis, under nine impact categories chosen by researchers because of their environmental relevance. The categories included influence on ozone layer depletion, respiratory organics, aquatic ecotoxicity, terrestrial ecotoxicity, land occupation, aquatic acidification, aquatic eutrophication, global warming and non-renewable energy.
In findings published today (Feb. 3) in the Journal of Industrial Ecology, the researchers show that on a one-trip basis, wooden pallets treated with conventional kiln heating and as-yet novel, radio-frequency heat treatment incur an overall carbon footprint that is slightly lower than plastic pallets during their life cycle. For the 100,000-trips comparison, the differences are even more significant, they reported.