Changes in climate characteristics are projected to manifest as increased mean air temperatures in most land and ocean regions, with hot extremes, heavy precipitation and increased probability of drought and precipitation deficits, Irmak added. Such climate shocks and shifts will impact crop yield, cultivation area and food supply, impacting sustainable agricultural development and poverty-eradication goals.
“But estimating the magnitudes of those changes is challenging because temperatures and precipitation have complex impacts on crop yields, along with other critical meteorological variables,” he said. “It only can be done with appropriate crop models. We will be conducting similar long-term analyses for specialty cropping systems, including fruit trees and major row crops, in Pennsylvania as well.”
This study is a part of long-term research investigating the fundamentals of coupled climate change and the impact of water, nutrient and crop-management strategies on agroecosystem productivity and environmental relationships for cropping systems, which Irmak started at the University of Nebraska and continues at Penn State.
Contributing to research were Rupinder Sandhu and Meetpal Kukal, who both received their master’s and doctoral degrees and worked as postdoctoral research associates under Irmak’s supervision at the University of Nebraska. Kukal currently is a research assistant professor in the Agricultural and Biological Engineering Department at Penn State, and Sandhu works with Locus Agricultural Solutions.
The research was funded by the U.S. Department of Agriculture’s National Institute of Food and Agriculture.