UNIVERSITY PARK, Pa. — Anywhere large-bodied mammalian carnivore species are present, other, smaller carnivores are less likely to occur, according to an international team of researchers that conducted the first global assessment of carnivore interactions using camera trap data.
This finding is important because populations of large mammalian carnivores are declining as habitat is lost, and often where large carnivores disappear, a chain reaction is set off that affects smaller carnivores, prey species, and even plant and insect communities.
"Large carnivores are imperiled," said David Miller, associate professor of wildlife population ecology, Penn State, whose research group in the College of Agricultural Sciences led the study. "We were able to see that this finding, with large-bodied-carnivore species, held around the globe."
Camera traps — sites watched over by automated cameras, often called trailcams — allowed researchers to better understand how carnivore communities are structured. They analyzed camera trap data for 108,087 trap days across 12 countries spanning five continents, and estimated local probabilities of co-occurrence among 768 species pairs from the order Carnivora — meat-eating mammals ranging from weasels to polar bears.
Researchers evaluated how shared ecological traits correlated with probabilities of co-occurrence. Within individual study areas, species pairs co-occurred more frequently than expected at random. Co-occurrence probabilities were greatest for species pairs that shared ecological traits including similar body size, temporal activity pattern and diet.
However, co-occurrence decreased as compared to other species pairs when the pair included a large-bodied carnivore. Those results suggest that a combination of shared traits, and top-down regulation by large carnivores shape local carnivore communities globally, Miller pointed out.
"This finding, that large carnivores exclude other carnivores, is true in North America, South America, Africa, Europe and Asia. It is really important for understanding why losing big carnivores is ecologically devastating," he said. "When you lose a large-bodied species of carnivore, you have other smaller carnivores increase in density, putting pressure on other smaller carnivores, and that can lead to increases in prey species — which might then lead to degradation of plant communities."