UNIVERSITY PARK, Pa. — Winter survival of honey bee colonies is strongly influenced by summer temperatures and precipitation in the prior year, according to Penn State researchers, who said their findings suggest that honey bees have a "goldilocks" preferred range of summer conditions outside of which their probability of surviving the winter falls.
The results of this study, which used several years of survey data provided by the Pennsylvania State Beekeeper’s Association and its members, enabled the development of a tool for forecasting honey bee winter survival to support beekeepers' management decisions, the researchers said.
Honey bees contribute more than $20 billion in pollination services to agriculture in the United States and generate another $300 million annually in honey production for U.S. beekeepers, noted the study's lead author, Martina Calovi, postdoctoral researcher in the Earth and Environmental Systems Institute in the College of Earth and Mineral Sciences.
"However, winter colony mortality greatly reduces the economic and ecosystem contributions of honey bees, which suffered estimated overwintering mortality rates of more than 53% from 2016 to 2019 in the United States," Calovi said. "Although winter mortality is known to vary regionally, the landscape and weather factors underlying this variation are poorly understood."
Honey bee colonies are not dormant during the winter, Calovi pointed out. The bees remain active and maintain the hive temperature between 75 and 93 degrees Fahrenheit by forming a thermoregulating cluster, in which they organize into a tight ball and vibrate their flight muscles to generate heat, allowing the colony to survive when outside temperatures fall below 50 F. This enables them to survive long periods of cold temperatures.
"During the winter, the colony stops foraging for nectar and pollen and relies on its existing food stores, collected during the plant growing season," she said. "Rearing of new bees also ceases, and the colony depends on the survival of a long-lived cohort of bees that is produced in the autumn."
As a result, any factors that limit the colony's ability to store adequate amounts of food during the summer and fall, that undermine effective thermoregulation during the winter, or that reduce the life span of overwintering bees can contribute to colony mortality, said co-author Christina Grozinger, Publius Vergilius Maro Professor of Entomology in the College of Agricultural Sciences.
Among these factors, she said, are weather conditions that influence the availability of forage, the bees' ability to thermoregulate in the winter, and the amount of time before bees are able to initiate brood rearing in the spring. Other dynamics include beekeeper management practices that affect parasite and pathogen loads — particularly control of Varroa mites that transmit viruses — and forage quality and pesticide exposure due to the surrounding land use.