UNIVERSITY PARK, Pa. — Ancient, expansive tracts of continental crust called cratons have helped keep Earth’s continents stable for billions of years, even as landmasses shift, mountains rise and oceans form. A new mechanism proposed by Penn State scientists may explain how the cratons formed some 3 billion years ago, an enduring question in the study of Earth’s history.
The scientists reported today (May 8) in the journal Nature that the continents may not have emerged from Earth’s oceans as stable landmasses, the hallmark of which is an upper crust enriched in granite. Rather, the exposure of fresh rock to wind and rain about 3 billion years ago triggered a series of geological processes that ultimately stabilized the crust — enabling the crust to survive for billions of years without being destroyed or reset.
The findings may represent a new understanding of how potentially habitable, Earth-like planets evolve, the scientists said.
“To make a planet like Earth you need to make continental crust, and you need to stabilize that crust,” said Jesse Reimink, assistant professor of geosciences at Penn State and an author of the study. “Scientists have thought of these as the same thing — the continents became stable and then emerged above sea level. But what we are saying is that those processes are separate.”
Cratons extend more than 150 kilometers, or 93 miles, from the Earth’s surface to the upper mantle — where they act like the keel of a boat, keeping the continents floating at or near sea level across geological time, the scientists said.
Weathering may have ultimately concentrated heat-producing elements like uranium, thorium and potassium in the shallow crust, allowing the deeper crust to cool and harden. This mechanism created a thick, hard layer of rock that may have protected the bottoms of the continents from being deformed later — a characteristic feature of cratons, the scientists said.
“The recipe for making and stabilizing continental crust involves concentrating these heat-producing elements — which can be thought of as little heat engines — very close to the surface,” said Andrew Smye, associate professor of geosciences at Penn State and an author of the study. “You have to do that because each time an atom of uranium, thorium or potassium decays, it releases heat that can increase the temperature of the crust. Hot crust is unstable — it’s prone to being deformed and won’t stick around.”