UNIVERSITY PARK, Pa. — If a material absorbs light, it will heat up. That heat must go somewhere, and the ability to control where and how much heat is emitted can protect or even hide such devices as satellites. An international team of researchers, including those from Penn State, has developed a novel method for controlling this thermal emission, with what they called promising implications for thermal management and thermal camouflage technologies.
The team published their work today (June 7) in the print edition of Science.
Led by researchers at The University of Manchester’s National Graphene Institute in England and the Penn State College of Engineering in the United States, with experts from Koc University in Turkey and Vienna University of Technology in Austria, the team demonstrated a way to build an interface that joins two surfaces with different geometric properties to localize thermal emissions from both surfaces, enabling a “perfect” thermal emitter. This means that the designed platform can emit thermal light from contained, designated emission areas with unit emissivity, or that the platform emits the strongest thermal radiation possible at that temperature.
“We have demonstrated a new class of thermal devices using concepts from topology — a branch of mathematics studying properties of geometric objects — and from non-Hermitian photonics, which is a flourishing area of research studying light and its interaction with matter in the presence of losses, optical gain and certain symmetries,” said corresponding author Coskun Kocabas, professor of 2D device materials at The University of Manchester.
The team said the work could advance thermal photonic applications to better generate, control and detect thermal emission. One application of this work could be in satellites, said co-author Sahin Ozdemir, professor of engineering science and mechanics at Penn State. Faced with significant exposure to heat and light, satellites equipped with the interface could emit the absorbed radiation with unit emissivity along a specifically designated area designed by researchers to be incredibly narrow and in whatever shape is deemed necessary.
Getting to this point, though, was not straightforward, according to Ozdemir. He explained part of the issue is limiting the perfect thermal absorber-emitter to the interface while the rest of the structures forming the platform remains “cold,” meaning those structures do not absorb or emit any form of energy.
“Building such a perfect absorber-emitter has been a major challenge,” Ozdemir said.
It is slightly easier to build an absorber-emitter at a desired frequency — as opposed to a perfect absorber-emitter that can absorb and emit any frequency — by trapping the light inside an optical cavity, the researchers said. The optical cavity comprises two mirrors, the first of which only partially reflects light, while the second completely reflects light. This setup enables what researchers call the “critical coupling condition,” where the incoming light partially reflected by the first mirror and the reflected light trapped between the two mirrors cancel each other out exactly. This completely suppresses the reflection, so the light beam becomes trapped in the system, getting perfectly absorbed and then emitted in the form of thermal radiation.
“We took a different approach in this work, though, by bridging two structures with different topologies, meaning they absorb and emit radiation differently,” Ozdemir said. “The structures are not at the critical coupling point, so they are not considered a perfect absorber-emitter — but their interface exhibits perfect absorption and emission.”