UNIVERSITY PARK, Pa. — When plants sense environmental challenges such as drought or extended periods of extreme temperatures, they instinctively reprogram their genetic material to survive and even thrive. The chemical code that triggers those changes can be deciphered and then duplicated to breed more vigorous, productive and resilient crops.
That’s the conclusion of a team of Penn State molecular plant geneticists that conducted the first-ever study of those reprogramming effects and discovered that “epigenetic reprogramming” code, which results in the expressing and over expressing of some genes and the silencing of others. Understanding and someday harnessing that reprogramming process, the researchers contend, will be critical to breeding crops that can tolerate weather extremes brought on by climate change.
“Plants can enter these new states — either really vigorous growth or, let's say, hunkering down to withstand stress,” said team leader Sally Mackenzie, professor of plant science in the College of Agricultural Sciences and professor of biology in the Eberly College of Science. “In other words, we don't have to cross breed to make it happen. We don't need to add new genes because the plants actually go into that state, when properly prompted, on their own.”
The ability to adapt relatively quickly to environmental change through these stress-induced states is passed down through many generations because plants “remember” through a process involving a chemical reaction, called DNA methylation, Mackenzie explained.