UNIVERSITY PARK, Pa. — Bacteria are always hungry, according to Thomas Wood, Biotechnology Endowed Chair and professor of chemical engineering in the Penn State College of Engineering. If you gave a single bacterium all the food it wanted, it would obtain the mass of the Earth in about two days.
To survive periods of starvation, bacteria must slow down their activity, or “go to sleep,” according to Wood. Toxin-antitoxin (TA) systems, or small genetic elements found in the chromosomes of bacteria, allow bacteria to either speed up growth — using antitoxins — or slow down growth — using toxins — in order to thrive in periods where food is either plentiful or scarce.
Wood and his colleagues detail their discovery of a TA system that they named the HEPN/MNT system — higher eukaryotes and prokaryotes nucleotide-binding and minimal nucleotidyltransferase — in Nucleic Acids Research.
“If you eat three meals a day, bacteria in your stomach starve between each of the meals,” Wood said. “If bacteria did not have toxins to slow their metabolism and save their resources, they would run out of energy and die during each starvation period.”
In the HEPN/MNT system, the MNT antitoxin “bites” the HEPN toxin to inactivate and block it. More specifically, adenosine triphosphate (ATP) is transferred near the active site of the toxin protein, inhibiting the toxin.
“The easiest way for a bacterial cell to turn off a toxin is to bear-hug and hold on to it,” Wood said. “We found in this specific system that the antitoxin acts as an enzyme to inactivate the toxin.”
The HEPN/MNT system is the most abundant system found in prokaryotes, or one-cell organisms like bacteria, according to Wood.