People rely on sunlight for heat, light, and energy every day, but three Penn State researchers believe we’re missing a valuable piece of information that sunlight itself could provide — the dynamic directions of incoming light.
“In the solar industry, you typically see people measuring the power potential of sunlight, which is important for energy production,” says Jeffrey Brownson, associate professor of energy and mineral engineering. “But very few people are using sunlight for information, and this baseline data could help improve a number of industries. If you can start collecting the right information, you can use it to inform crop yields, assess fire risk of sloped surfaces such as mountains, and predict home heating patterns and solar energy generation.”
This information is missing now, says Brownson, because existing technology to capture sunlight’s directionality on a regular basis is expensive. A pyrheliometer, which is like a paper towel roll attached to a sensor that tracks the sun across the sky, can measure the angle of direct sunlight accurately, but it commonly costs between $20,000 and $30,000. The device also includes moving parts that can break, and it requires regular maintenance.
So Brownson, along with two other Penn State researchers — Vivek Srikrishnan, a doctoral student in energy and mineral engineering, and George Young, professor of meteorology and atmospheric science — set out to create a device that was cheaper and required less maintenance than a pyrheliometer. They’ve finished a prototype of their new device, which they’ve dubbed the “All-Seeing Eye” (ASE). Now, with help from a seed grant from the Penn State Institutes of Energy and the Environment, the team is installing two models of their device in central Pennsylvania. They have set up one at the Russell E. Larson Agricultural Research Center at Rock Springs and plan to install another in the State College area in fall 2016.