UNIVERSITY PARK, Pa. — Smart glass, transitional lenses and mood rings are not the only things made of liquid crystals; mucus, slug slime and cell membranes also contain them. Now, a team of researchers is trying to better understand how liquid crystals, combined with bacteria, form living materials and how the two interact to organize and move.
"One of the ideas we came up with was materials that live," said Igor S. Aronson, holder of the Huck Chair and Professor of Biomedical Engineering, Chemistry and Mathematics. Living matter, active matter may be self-healing and shape-changing and will convert energy to mechanical motion."
The living material Aronson is exploring using predictive computational models and experiments is composed of a bacterium — Bacillus subtilis — that can move quickly using its long flagella and a nematic liquid crystal — disodium cromoglycate. Liquid crystals as materials sit somewhere between a liquid and a solid. In this case, the molecules in disodium cromoglycate line up in long parallel rows, but are not fixed in place. Capable of moving, they remain oriented in only one direction unless disturbed.
According to Aronson, this type of liquid crystal closely resembles a straight-plowed field with the ridges the molecules and the furrows the areas in between.
Previously the researchers found that these tiny bacteria in a liquid crystal material can push cargo — tiny particles — through the channels in a liquid crystal and move at four times their body length when in small concentrations, but conservatively, at 20 times their body length when in large numbers.