In their previous research, the team found that a certain protein, called non-structural protein 1 (NS1), may be responsible for inducing the formation of these nanotubes. With one of the new grants, totaling nearly $4 million, Jose and her colleague Indira Mysorekar, professor of medicine at Baylor College of Medicine, will conduct experiments in human cells in vitro, meaning in a culture dish, and in vivo, meaning in live mice, to examine the specific regions of NS1 that may participate in signaling or interacting with proteins on human cells to initiate the formation of the nanotubes.
“Discovering which regions of NS1 are ‘talking’ to human proteins is the first step in understanding how nanotube formation begins,” Jose said. “If we can figure out how this protein is working, we can potentially target the protein with drugs that disable its function. Interestingly, when I was a postdoc, my lab was instrumental in solving the structure of dengue virus NS1, so now I’ve gone back to my roots to further study this important protein.”
Next, the researchers will study whether whole virus particles or just viral RNA, or genetic material, are transported through the nanotubes.
“In our previous research, we documented components of the virus, like RNA and certain proteins, inside these nanotubes, so the question is whether the whole virus or just components of the virus can pass through,” Jose said.
Additionally, the researchers plan to further investigate the role of tunneling nanotube formation in the transmission of Zika virus from mother to fetus by examining the virus in action in pregnant mice. Finally, the team will study mitochondria transport through these nanotubes.
“In addition to viral components, we have observed host cell organelles, including mitochondria, in these nanotubes,” Jose said. “Mitochondria are the cell’s powerhouses, so by hijacking these energy-generating organelles, the virus could be fueling its own ability to infect cells.”
Jose noted that other viruses, including HIV, are known to produce similar nanotubes.
“We have drugs that inhibit nanotube formation for HIV, so if we can develop something similar for Zika virus, we may be able to develop therapeutic interventions to prevent pregnant women who are infected with the virus from transmitting it to their baby,” Jose said.
So far, Jose said that other flaviviruses do not appear to have the ability to produce tunneling nanotubes, with the exception of West Nile virus to a small degree.
“A question we have is whether other flaviviruses could evolve this ability at some point,” Jose said. “In addition to helping to avoid the devastating consequences of another Zika virus outbreak, our research could help in monitoring other flaviviruses that may evolve the ability to form nanotubes.”
Jose and her colleagues are also studying mechanisms by which Zika virus assembles in host cells prior to inducing tunneling nanotubes. In previous research that published recently in the journal npj Viruses and PLOS Neglected Tropical Diseases, they specifically investigated processes within Zika virus that prime it for infection of human cells.
“In one study, we discovered a ‘latch and lock’ mechanism by which two Zika virus proteins connect to stabilize and prepare the virus to infect human cells,” Jose said. “In the other, we found an interaction between Zika virus’s capsid protein and viral membrane protein that helps us to understand how viruses assemble within host cells during their replication.
With a second NIH grant, totaling nearly $2 million, Jose will also examine additional non-structural proteins (NS2 and NS4) to investigate their role in viral assembly.
“Our work will document for the first time the feasibility of a powerful live imaging approach to study the trafficking of viral components, including RNA and proteins, as well as the virus potentially co-opting host factors to infect human cells,” Jose said.
Jose explained that understanding all the phases of Zika virus’s infection, replication and transmission may aid in identifying potential targets for therapeutics.
“These studies,” she said, “may help us to understand, treat and prevent flavivirus infections and address a major global public health need.”