UNIVERSITY PARK, Pa. — Many of us remember those school-room models of our Solar System, with tiny wooden planets rotating at the ends of their wires around a bright-orange painted sun. But how accurate is the model? Do the planets really align in a plane, or do their orbits crisscross around the sun at different angles? It turns out the toy isn’t too far off, at least in this one aspect.
Our solar system is actually pretty flat, with most of its planets orbiting within three degrees of the plane of the Earth’s orbit around the sun, called the ecliptic. This flatness extends to the asteroid belt between Mars and Jupiter, though some members of the region of icy objects past Neptune called the Kuiper belt are more extreme, with inclinations up to 30 degrees.
This relative flatness, which is not an unusual feature of solar systems, results from how stars and planetary systems typically form. The process begins with a slowly rotating, roughly spherical cloud of gas and dust, about one light year across. Eventually, a portion of this material collapses toward the center, forming a star, and the spinning cloud begins to flatten into a disk due to its rotation. It’s out of this rotating protoplanetary disk of gas and dust that planets are then spun out, resulting in a relatively flat solar system. Eventually, when most of the gas has settled onto the star or planets or has dissipated, the system is left with a debris disk of planetary leftovers, like our own asteroid-strewn Kuiper belt.
Some astronomers at Penn State study protoplanetary and debris disks to get a better idea of how planetary systems form. But not all stars and planets form in exactly the same manner — and not all planetary systems are flat.