Even the best current models leave out one major factor: human behavior. To address that omission, Atamturktur is enlisting researchers from social and behavioral sciences in the effort to better understand the relationship between architectural design, building systems, and human comfort and performance. She’s aiming for the development of cyber-physical-human systems that include us as essential parts of a building’s design and function. What it comes down to, she said, is, “How can the building influence the people in it, and how can the people influence the building?”
Our current buildings are rudimentary cyber-physical systems — mechanical structures with a few basic cyber elements such as timed thermostats and daylight-sensitive outdoor lights. But they’re actually quite dumb, said Atamturktur. A truly smart building will be able to sense who is in it and what their needs are at different times throughout the day. Instead of a simple timer set to turn up the heat when people are expected to be in the building and turn it down again when the building is expected to be empty, sensors would detect when people actually are in the building, how many of them are present, where they are, and what equipment they are using, and adjust the heat, humidity, lighting, and air flow accordingly. In effect, our buildings will be keeping tabs on us and responding to us in real time, without direct, intentional input from us.
Has anyone ever told her that this sounds a little creepy?
“Oh, it is creepy!” she agreed. “But it’s no more creepy than self-driving cars.”
Or ordinary, person-driven cars, said Freihaut. Today’s average car carries about a hundred sensors that constantly monitor everything from internal cabin conditions to whether you’re driving up or down a hill, the load on the engine, and whether the headlights need to turn on, he said. “In five or 10 years, there will be 200. Your car has what, maybe 15, 25 square feet of seating space? How many sensors per square foot do we use in buildings? Very, very few. The building industry is way behind on this. We’re the last to really employ information technology in any sophisticated way.”
How we get there
Freihaut thinks we already have engineering solutions — practical solutions — to many of the energy challenges we face, and that the rest are within reach in five to 10 years, if we invest the time and effort needed to develop them. At the top of his list is a safe, affordable way to store energy at the building itself, so that heat generated by a CHP turbine can be banked for later use.
“Just a simple hot water tank doesn’t cut it,” he said. “We need to invent a material that can safely store energy at a high temperature and that doesn’t take up a lot of space.’ ”
He likens this challenge to one tackled by scientists in the space program’s early years — inventing a lightweight, extremely heat-resistant material to keep manned vehicles from burning up during re-entry. “They invented these little tiles that are a quarter of an inch or so thick, and it’s 3,000 degrees out there and it’s only 100 degrees in the capsule,” he said. “That’s a hell of a material! How much money did we spend inventing that? Don’t tell me we can’t afford to do research to invent a new material that we need to conserve 40% of all the energy used in this country.”
Even more than scientific and engineering solutions, he said, what we need most, and might be hardest to achieve, is support for these efforts: public awareness and a desire to improve on our current systems; a regulatory climate that doesn’t prop up the old systems and penalize new ventures into renewables; and, most of all, leadership. That could come from many sources: small communities with their own power grids showing how well a decentralized system works; government officials more focused on solving problems than on scoring political points; scientists and engineers who push us to see old problems in new ways.
Atamturktur, speaking from her office in a 110-year-old building at University Park, said researchers in her department are doing that with every major building system. She believes architectural engineers hold a unique responsibility. “The products we make have such a long-term effect on humanity,” she said. “Every tiny bit of improvement that you make stays with you for decades.”
This story first appeared in the Fall 2019 issue of Research/Penn State magazine.