UNIVERSITY PARK, Pa. — A new discovery, reported today in a global study that encompassed more than a decade of research, could lead to the breeding of corn crops that can withstand drought and low-nitrogen soil conditions and ultimately ease global food insecurity, according to a Penn State-led team of international researchers.
In findings published today (March 16) in the Proceedings of the National Academy of Science, the researchers identified a gene encoding a transcription factor – a protein useful for converting DNA into RNA – that triggers a genetic sequence responsible for the development of an important trait enabling corn roots to acquire more water and nutrients.
That observable trait, or phenotype, is called root cortical aerenchyma and results in air passages forming in the roots, according to research team leader Jonathan Lynch, distinguished professor of plant science. His team at Penn State has shown that this phenotype makes roots metabolically cheaper, enabling them to explore the soil better and capture more water and nutrients from dry, infertile soil.