Located at the Hobby-Eberly Telescope at the McDonald Observatory in Texas, the HPF provides some of the highest precision measurements to date of such infrared signals from nearby stars.
“Making the discovery with HPF was extra special, as it is a new instrument that we designed, developed and built from the ground-up for the purpose of looking at the uncharted planet population around the lowest mass stars,” said Guðmundur Stefánsson, NASA Sagan Fellow in Astrophysics at Princeton University and lead author on the paper, who helped develop HPF and worked on the study as a graduate student at Penn State. “Now we are reaping the rewards, learning new and unexpected aspects of this exciting population of planets orbiting some of the most nearby stars.”
The instrument has already yielded critical information in the discovery and confirmation of new planets, Stefánsson explained, but the discovery of the planet LHS 3154b exceeded all expectations.
“Based on current survey work with the HPF and other instruments, an object like the one we discovered is likely extremely rare, so detecting it has been really exciting,” said Megan Delamer, astronomy graduate student at Penn State and co-author on the paper. “Our current theories of planet formation have trouble accounting for what we’re seeing."
In the case of the massive planet discovered orbiting the star LHS 3154, the heavy planetary core inferred by the team’s measurements would require a larger amount of solid material in the planet-forming disk than current models would predict, Delamer explained. The finding also raises questions about prior understandings of the formation of stars, as the dust-mass and dust-to-gas ratio of the disk surrounding stars like LHS 3154 — when they were young and newly formed — would need to be 10 times higher than what was observed in order to form a planet as massive as the one the team discovered.
“What we have discovered provides an extreme test case for all existing planet formation theories,” Mahadevan said. “This is exactly what we built HPF to do, to discover how the most common stars in our galaxy form planets — and to find those planets.”
Other Penn State authors on the paper are Eric Ford, Brianna Zawadzki, Fred Hearty, Andrea Lin, Lawrence Ramsey and Jason Wright. Other authors on the paper are Joshua Winn of Princeton University, Yamila Miguel of the University of Leiden, Paul Robertson of the University of California, Irvine, and Rae Holcomb of the University of California, Shubham Kanodia of the Carnegie Institution for Science, Caleb Cañas of the NASA Goddard Space Flight Center, Joe Ninan of India’s Tata Institute of Fundamental Research, Ryan Terrien of Carleton College, Brendan Bowler, William Cochran, Michael Endl and Gary Hill of The University of Texas at Austin, Chad Bender of The University of Arizona, Scott Diddams, Connor Fredrick and Andrew Metcalf of the University of Colorado, Samuel Halverson of California Institute of Technology’s Jet Propulsion Laboratory, Andrew Monson of the University of Arizona, Arpita Roy of Johns Hopkins University, Christian Schwab of Australia ‘s Macquarie University, and Gregory Zeimann of the Hobby-Eberly Telescope at UT Austin.
The work was funded by the Center for Exoplanets and Habitable Worlds at Penn State, the Pennsylvania Space Grant Consortium, the National Aeronautics and Space Administration, the National Science Foundation and the Heising-Simons Foundation.