UNIVERSITY PARK, Pa. — Metals embedded in concrete can erode, rusting, and weakening until the concrete splits and the structure it supports falls. Such corrosion is believed to be one of the main issues that exacerbated the damage that led to the June 24 Surfside, Florida, condominium collapse, according to the U.S. Department of Commerce’s National Institute of Standards and Technology (NIST).
This corrosion is one of the biggest global durability challenges across infrastructure in all fields, according to Juan Pablo “JP” Gevaudan, assistant professor of architectural engineering and principal investigator of a three-year, $800,000 grant from the U.S. Department of Energy’s (DOE) Nuclear Energy University Program that will further explore the electrochemical corrosion degradation science of concrete as it applies to high-level nuclear waste (HLNW).
Defined by the DOE as any radioactive material that requires permanent isolation, HLNW can result from processing nuclear fuel and produce radionuclides, radioactive atoms that are inherently unstable and harmful to life. Currently, HLNW is packaged in metal canisters and embedded in concrete. Gevaudan's collaborators include Andrea Argüelles, assistant professor of engineering science and mechanics, and Rebecca Napolitano, assistant professor of architectural engineering.
“Understanding and preventing corrosion — especially in infrastructure — is one of our great global durability challenges,” Gevaudan said. “The degradation science of concrete applies to many engineering fields, and we all want to improve our infrastructure.”
According to Gevaudan, when he and his collaborators learned of the challenges at the end-of-life of nuclear fuel cycles, they immediately saw synergy between architectural engineering’s goal of improving the durability of the built environment with the DOE’s goal of studying corrosion in embedded HLNW metal canisters to extend the service life of the nuclear waste disposal infrastructure. To expand this synergy across University Park, Gevaudan said, the team has already met with faculty in the Ken and Mary Alice Lindquist Department of Nuclear Engineering to identify areas where their work may align, and they plan to continue their discussions on areas of convergent research.