The team’s new research — initiated by Hugo’s discovery of galls lying near an ant nest — revealed a much more complex type of myrmecochory, one that combined the wasp-oak gall interaction with the edible appendage-ant interaction.
“First, we observed that, while these galls normally contain a fleshy pale-pink ‘cap,’ the galls near the ant nest did not have these caps, suggesting that maybe they were eaten by the ants,” said Deans. “Ultimately, this led us to discover that gall wasps are manipulating oaks to produce galls, and then taking another step and manipulating ants to retrieve the galls to their nests, where the wasp larvae may be protected from gall predators or receive other benefits. This multi-layered interaction is mind blowing; it’s almost hard to wrap your mind around it.”
The team’s findings published in the journal American Naturalist.
Investigating the interaction
To better understand the interaction, the researchers conducted a series of field and laboratory experiments. First, to determine if, like eliaosomes, the oak gall caps — which the researchers named kapéllos (Greek for "cap") — were indeed edible and attractive to ants, the team directly observed oak galls in ant colonies in the wild in Western New York and central Pennsylvania. Additionally, they set up video cameras to capture additional animal/gall interactions. In both locations, they saw ants transporting galls to their nests. Within the nests, all the edible caps were removed, while the galls themselves remained intact.
In a second set of experiments to determine if kapéllos functioned similarly to elaiosomes, the researchers investigated ant preference for oak galls vs. bloodroot seeds. They set up seed/gall bait stations and observed that ants removed the same number of seeds and galls, suggesting no difference in ant preference.
Next, the scientists conducted a laboratory experiment to document whether ants collected galls because of their nutritious kapéllos. They set up three petri-dish treatments — containing entire galls, gall bodies with kapéllos removed or kapéllos with gall bodies removed — along with a control dish containing a different type of gall that did not have an edible appendage. They introduced ants to the petri dishes. They found that ant interest did not differ between the control galls and the kapéllo-free treatment galls, both of which lacked edible components. By contrast, ant interest was greater for galls with intact kapéllos and for kapéllos alone than for control galls.
“We showed that galls with caps were far more attractive to ants than galls without caps and that the caps by themselves were also attractive to the ants,” said John Tooker, professor of entomology. “This suggested that the caps must have evolved as a way to entice ants.”
Finally, the team asked, "What’s in kapéllos that make them so attractive to ants?" According to Tooker, the chemistry of elaiosomes is well studied and known to contain nutritious fatty acids. Therefore, the team compared the chemical compositions of kapéllos to elaiosomes and found that kapéllos, too, contained healthful fatty acids.
“The fatty acids that are abundant in gall caps and eliosomes seem to be mimicking dead insects,” said Tooker. “Ants are scavengers that are out trying to find and grab anything that’s suitable to bring back to their colony, so it’s not an accident that the gall caps and the elaiosomes both have fatty acids typical of dead insects.”
Which came first?
The last, and according to the researchers, most intriguing, question the team pursued was, "Which came first in evolutionary time? The elaiosome interaction or the gall interaction?"
“Given that myrmecochory was described more than a century ago and has been well-researched and taught in schools, one might assume that the elaiosome interaction came first, but that assumption may be wrong for several reasons,” said Robert J. Warren II, professor of biology, SUNY Buffalo State.