UNIVERSITY PARK, Pa. — By combining the genetic sequencing and analysis of the microbes in a milk sample with artificial intelligence (AI), researchers were able to detect anomalies in milk production, such as contamination or unauthorized additives. The new approach could help improve dairy safety, according to the study authors from Penn State, Cornell University and IBM Research.
In findings published today (Oct. 10) in mSystems, a journal of the American Society for Microbiology, the researchers reported that using shotgun metagenomics data and AI, they were able to detect antibiotic-treated milk that had been experimentally and randomly added to the bulk tank milk samples they collected. To validate their findings, the researchers also applied their explainable AI tool to publicly available, genetically sequenced datasets from bulk milk samples, further demonstrating the untargeted approach’s robustness.
“This was a proof of concept study,” said the study’s lead Erika Ganda, assistant professor of food animal microbiomes, Penn State College of Agricultural Sciences. “We can look at the data from the microbes in the raw milk and, using artificial intelligence, see if the microbes that are present reveal characteristics such as whether it is pre-pasteurization, post-pasteurization, or is from a cow that has been treated with antibiotics.”
The researchers collected 58 bulk tank milk samples and applied various AI algorithms to differentiate between baseline samples and those representing potential anomalies, such as milk from an outside farm or milk containing antibiotics. This study characterized raw milk metagenomes — collections of genomes from many individual microbes within a sample — in more sequencing depth than any other published work to date and demonstrated that there is a set of consensus microbes found to be stable elements across samples.
The study’s findings suggest that AI has the potential to significantly enhance the detection of anomalies in food production, providing a more comprehensive method that can be added to scientists’ toolkit for ensuring food safety, Ganda explained.
“Traditional analysis of microbial sequencing data, such as alpha and beta diversity metrics and clustering, were not as effective in differentiating between baseline and anomalous samples,” she said. “However, the integration of AI allowed for accurate classification and identification of microbial drivers associated with anomalies.”