Major projects aimed at turning such futuristic technologies into realities are under way at Penn State. The National Science Foundation (NSF) recently offered support to three of the center’s projects with more than $4 million in research grants. Robinson’s group is developing a new type of post-silicon transistor, opening the way for ever-smaller electronics. Joan Redwing, professor of materials science and engineering, and her team are working on ways to create two-dimensional materials at low temperatures, to make production more feasible for industry and to allow the materials to form on glass and plastic. Zhiwen Liu, professor of electrical engineering, and Ana Laura Elias Arriaga, research associate in physics, are working with colleagues at Rensselaer Polytechnic Institute to develop layered materials for use in light-based technologies.
Stacking monolayers
Terrones and Robinson believe that the key to success in their field will be to combine different types of monolayers. Robinson’s group has worked with other Penn State faculty and researchers at the University of Texas at Dallas to induce different two-dimensional materials to form directly on top of one another.
“By doing this, we have been able to achieve really clean interfaces between the layers,” Robinson says. “This is a key for novel nanoelectronic circuits.”
As with layered materials made of a single compound, these “hybrid” materials often display unexpected—and potentially useful—behaviors. Two such materials were made in the lab of Pulickel Ajayan, a 2DLM member at Rice University, and then sent to Terrones for analysis.
In an attempt to make the materials at lower temperatures than ever before, an advance that would ease mass production, Ajayan’s team had inadvertently caused two familiar materials to settle into new relationships with each other.
At one temperature, tungsten disulfide formed a layer on top of a layer molybdenum disulfide. In this configuration, the combined materials work like a transistor. At another temperature, the two materials formed layers side by side in the same plane.
“It is like having two different fabrics joined together, but at the joint the two fabrics are like one,” says Terrones. In the edge-to-edge configuration, the junction between the two fabrics is a meeting place where electrons and photons pass energy back and forth.
“We are now finding these materials might have important uses as very fast and sensitive photo-sensors or even light-emitting devices,” Terrones says.