UNIVERSITY PARK, Pa. — Systems in the Universe trend toward disorder, with only applied energy keeping the chaos at bay. The concept is called entropy, and examples can be found everywhere: ice melting, campfire burning, water boiling. Zentropy theory, however, adds another level to the mix.
A team led by Zi-Kui Liu, the Dorothy Pate Enright Professor of Materials Science and Engineering at Penn State, developed the theory. The “Z” in zentropy stands for the German word Zustandssumm, meaning ‘‘sum over states” of entropy. Alternatively, Liu said, zentropy may be considered as a play on the term “zen” from Buddhism and entropy to gain insight on the nature of a system. The idea, Liu said, is to consider how entropy can occur over multiple scales within a system to help predict potential outcomes of the system when influenced by its surroundings.
Liu and his research team have published their latest paper on the concept, providing evidence that the approach may offer a way to predict the outcome of experiments and enable more efficient discovery and design of new ferroelectric materials. The work, which incorporates some intuition and a lot of physics to provide a parameter-free pathway to predicting how advanced materials behave, was published in Scripta Materialia.
Ferroelectrics have unique properties, making them valuable for a variety of applications both now and in developing materials, researchers said. One such property is spontaneous electric polarization that can be reversed by applying an electric field, which facilitate technologies ranging from ultrasounds to ink-jet printers to energy-efficient RAM for computers to the ferroelectric-driven gyroscope in smartphones that enable smooth videos and sharp photos.
To develop these technologies, researchers need to experiment to understand the behavior of such polarization and its reversal. For efficiency’s sake, the researchers usually design their experiments based on predicted outcomes. Typically, such predictions require adjustments called “fitting parameters” to closely match real-world variables, which take time and energy to determine. But zentropy can integrate top-down statistical and bottom-up quantum mechanics to predict experimental measures of the system without such adjustments.
"Of course, at the end of the day, the experiments are the ultimate test, but we found that zentropy can provide a quantitative prediction that can narrow down the possibilities significantly,” Liu said. “You can design better experiments to explore ferroelectric material and the research work can move much faster, and this means you save time, energy and money and are more efficient.”