UNIVERSITY PARK, Pa. — The ability of piezoelectric materials to convert mechanical energy into electrical energy and vice versa makes them useful for various applications from robotics to communication to sensors. A new design strategy for creating ultrahigh-performing piezoelectric ceramics opens the door to even more beneficial uses for these materials, according to a team of researchers from Penn State and Michigan Technological University.
“For a long time, piezoelectric polycrystalline ceramics have shown limited piezoelectric response in comparison to single crystals,” said Shashank Priya, associate vice president for research and professor of materials science and engineering at Penn State and co-author of the study published in the journal Advanced Science. “There are many mechanisms that limit the magnitude of piezoelectricity in polycrystalline ceramic materials. In this paper, we demonstrate a novel mechanism that allows us to enhance the magnitude of the piezoelectric coefficient several times higher than is normally expected for a ceramic.”
The piezoelectric coefficient, which describes the level of a material's piezoelectric response, is measured in picocoulombs per Newton.
“We achieved close to 2,000 picocoulombs per Newton, which is a significant advance, because in polycrystalline ceramics, this magnitude has always been limited to around 1,000 picocoulombs per Newton,” Priya said. "2,000 was considered an unreachable target in the ceramics community, so achieving that number is very dramatic.”
The path to discovering the new mechanism began with a question: What factors control the magnitude of piezoelectric constant? The piezoelectric constant is the charge generated by a unit of applied force, picocoulomb per Newton, which in turn is dependent on effects occurring at atomic to mesoscale.
“We wondered what are some basic effects, almost at the atomic scale, of the fundamental parameters that limit or control the response?” Priya said. “Using the multiscale model developed at Michigan Tech, which is a combination of different modeling techniques to bridge the length scale, we carried out a very detailed investigation on two phenomena.”
One was chemical heterogeneity, which describes how atoms of different elements in a material are distributed at the nanoscale. This is important because the different atomic positions and the sites that they occupy are critical to piezoelectric response. The second is anisotropy, the influence of crystallographic orientation. This is important because piezoelectric properties in a material are higher along a certain crystallographic direction.