UNIVERSITY PARK, Pa. — Sometimes friction is good, such as the friction between a road and a car’s tires to prevent the vehicle from skidding. But sometimes friction is bad — if you did not put oil in that very same car, there would be so much friction in the bearings of the engine that the car could not operate.
A material state known as super-lubricity, where friction between two contacting surfaces nearly vanishes, is a phenomenon that materials researchers have studied for years due to the potential for reducing the energy cost and wear and tear on devices, two major drawbacks of friction. However, there are times when friction is needed within the same device, and the ability to turn super-lubricity on and off would be a boon for multiple practical engineering applications.
Seong Kim, distinguished professor of chemical engineering and associate head of the Department of Chemical Engineering at Penn State, and Zhe Chen, a researcher with the State Key Laboratory of Fluid Power and Mechatronic Systems and the Department of Mechanical Engineering at Zhejiang University, proposed in a study in Applied Materials Today that this super-lubricity switch may be found in humidity. Specifically, water vapor and vapor in phenol, which is a family of organic compounds.
Super-lubricity is a key characteristic of certain two-dimensional (2D) materials, which consist of a single layer of atoms, especially graphene and molybdenum disulfide. Graphene is often used as a solid lubricant, in the form of a coating on various materials such as metals and plastics. With graphene, the atoms are oriented in a hexagonal manner, which forms this mountain-and-valley landscape, much like a supermarket egg crate.