UNIVERSITY PARK, Pa. — For wearable electronics to live up to their promise for health care monitoring, they need to do at least two things: transform from rigid to soft to accommodate changing structural needs, and heal their own normal wear-and-tear. With the help of liquid metal and specialized polymers, researchers have developed sensors that can do both.
A team of researchers led by Hyanyu “Larry” Cheng, who is James L. Henderson, Jr. Memorial Associate Professor of Engineering Science and Mechanics at Penn State, published their results in Advanced Materials.
According to Cheng, manufacturing sensors in a rigid state is better than in a soft state because the different layers can stack on one another without deforming. Sensors also benefit from being in a rigid state when a person needs to read the vital information provided, which displays best on a rigid screen. However, being in a soft state while being worn by a patient — who may be monitoring their temperature, heart rate or other vital signs for disease progression or for general health awareness — allows for the sensor to conform to the skin’s topography and gather more accurate vital information.
“In the past we have to really use two types of devices, because we didn’t have a way to get these two married together,” Cheng said. “But now, we prove that switching a sensor from rigid to soft can be modulated by a simple temperature switch. When the sensor is skin temperature, it is soft, but when it is very cold, it will become rigid again.”
This also helps with adhesion to the skin and removal of the sensor, according to the researchers.
“When the sensor is soft, the adhesion property is stronger,” said first author and co-corresponding author Li Yang, formerly a visiting scholar in the Penn State Department of Engineering Science and Mechanics and now of the School of Health Sciences and Biomedical Engineering at Hebei University of Technology, Tianjin, China. “For example, you can apply an ice pack on the skin so the sensor material will gradually become rigid, and it naturally peels off the skin. It’s a switch in the adhesion from strong to weak, and it is easier to get it off without damaging the skin. This is especially important for infants and the elderly, who may have very delicate skin.”