Editor’s note: One of the articles on which this story is based has been retracted. Following established research integrity processes conducted by Penn State, this paper was retracted by the journal.
UNIVERSITY PARK, Pa. — The tumor suppressor protein p53, known as "the guardian of the genome," protects the body’s DNA from daily stress or long-term damage by triggering the cells to make repairs or to self-destruct. But mutations in the p53 gene that codes for the protein can prevent it from performing its job, making errors accumulate in the genetic code and leading to diseases like cancer.
For the first time, a Penn State-led team of researchers uncovered the complete structure of the p53 protein using patient samples. They also investigated how mutation-induced changes in the p53 structure can impact different cancers. They published their results in ChemBioChem and the International Journal of Molecular Sciences.
“We defined the full-length structure of p53, opening the door to understanding the 3D arrangements that can be used to inform new therapeutics,” said Maria Solares, Penn State doctoral student in molecular, cellular and integrative biosciences in the Huck Institutes of the Life Sciences and first author on both papers. “Scientists have previously identified p53 as an important focal point in the origin of tumors, and much has been investigated on its function in cells. However, without understanding the complete structure of the p53, our knowledge of how to deal with it in diseased cells was incomplete.”
Researchers used cryo-electron microscopy (cryo-EM) to image individual p53 proteins isolated from brain tumor cells. Unique to their work, Solares said, the team used semi-conductor materials to cleanly capture the isolated p53 proteins prior to imaging. These silicon-based microchips hold the proteins in such a way that the researchers could resolve previously unseen molecular features.
“Seeing the complete structure of the p53 was like finally seeing the whole human body after only viewing limited parts or limbs for so long,” said corresponding author Deb Kelly, Penn State professor of biomedical engineering, director of the Penn State Center for Structural Oncology and Huck Chair in Molecular Biophysics. “It’s hard to understand how things work without knowledge of their entire physical makeup.”
The p53 protein comprises individual units called monomers, which combine to create larger entities, or dimers and tetramers.
“We found a mixture of monomers, dimers and tetramers were present inside cancer cells, each of which serve different purposes based on events happening inside the cell’s nucleus,” Solares said. “Results of the dimer structure revealed, for the first time, a ‘closed’ configuration of the molecule. This form of p53 is like being at the starting blocks before a race, primed and ready to run toward DNA when notified by other cellular signals that there’s a problem.”