UNIVERSITY PARK, Pa. — Astronomers and amateurs alike know the bigger the telescope, the more powerful the imaging capability. To keep the power but streamline one of the bulkier components, a Penn State-led research team created the first ultrathin, compact metalens telescope capable of imaging far-away objects, including the moon.
Metalenses comprise tiny, antenna-like surface patterns that can focus light to magnify distant objects in the same way as traditional curved glass lenses, but they have the advantage of being flat. Though small, millimeters-wide metalenses have been developed in the past, the researchers scaled the size of the lens to eight centimeters in diameter, or about four inches wide, making it possible to use in large optical systems, such as telescopes. They published their approach in Nano Letters.
“Traditional camera or telescope lenses have a curved surface of varying thickness, where you have a bump in the middle and thinner edges, which causes the lens to be bulky and heavy,” said corresponding author Xingjie Ni, associate professor of electrical engineering and computer science at Penn State. “Metalenses use nano-structures on the lens instead of curvature to contour light, which allows them to lay flat.”
That is one of the reasons, Ni said, modern cellphone camera lenses protrude from the body of the phone: the thickness of the lenses take up space, though they appear flat since they are hidden behind a glass window.
Metalenses are typically made using electron beam lithography, which involves scanning a focused beam of electrons onto a piece of glass, or other transparent substrate, to create antenna-like patterns point by point. However, the scanning process of the electron beam limits the size of the lens that can be created, as scanning each point is time-consuming and has low throughput.
To create a bigger lens, the researchers adapted a fabrication method known as deep ultraviolet (DUV) photolithography, which is commonly used to produce computer chips.