UNIVERSITY PARK, Pa. — The largest catalog of gravitational wave events ever assembled has been released by an international collaboration that includes Penn State researchers. Gravitational waves are ripples in space time produced as aftershocks of huge astronomical events, such as the collision of two black holes. Using a global network of detectors, the research team identified 35 gravitational wave events, bringing the total number of observed events to 90 since detection efforts began in 2015.
The new gravitational wave events were observed between November 2019 and March 2020, using three international detectors: The two Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors in Louisiana and Washington state in the U.S. and the Advanced Virgo detector in Italy. Data from these three detectors were carefully analyzed by a team of scientists from the LIGO Scientific Collaboration, the Virgo Collaboration and the KAGRA Collaboration. The catalog of new events from the second half of LIGO’s third observing run is described in a paper appearing Nov. 7 in the preprint server arXiv.
“In the third observation run of LIGO and Virgo, we have begun to detect the more elusive types of gravitational wave events,” said Debnandini Mukherjee, a postdoctoral researcher at Penn State and a member of the LIGO collaboration. “This has included heavy mass black holes, more extreme mass ratio binaries and neutron star–black hole coalescences detected with higher confidence. We are in the exciting era where such observations have begun to question conventionally known astrophysics and have begun to contribute towards a clearer understanding of formations of such objects.”
New detections
Of the 35 events detected, 32 were most likely to be black hole mergers — two black holes spiraling around each other and finally joining together, an event that emits a burst of gravitational waves.
The black holes involved in these mergers have a range of sizes, the most massive of which is around 90 times the mass of our sun. Several of the resulting black holes that formed from these mergers exceed 100 times the mass of our sun and are classed as intermediate-mass black holes. This marks the first observation of this type of black hole, which had long been theorized by astrophysicists.
Two of the 35 events were likely to be mergers of neutron stars with black holes — a much rarer type of event and one that was first discovered during the most recent observing run of LIGO and Virgo. One of these newly detected mergers seems to show a massive black hole about 33 times the mass of our sun colliding with a very low-mass neutron star about 1.17 times the mass of our sun. This is one of the lowest-mass neutron stars ever detected, using gravitational waves or electromagnetic observations.
The masses of black holes and neutron stars are key clues to how massive stars live and ultimately die in supernova explosions.
“In this latest update to the catalog, we were finally able to observe mergers of black holes with neutron stars, which we didn’t find in any of the previous observing runs,” said Becca Ewing, graduate at Penn State and a member of Penn State’s LIGO group. “With every new observing run, we find signals with new and different properties, expanding our understanding of what these systems can look and behave like. In this way, we can begin to improve our understanding of the universe more and more with each new observation.”
The final gravitational wave event came from a merger of a black hole with a mass around 24 times the mass of our sun with either a very light black hole or a very heavy neutron star of around 2.8 times the mass of our sun. The research team has deduced it is most likely to be a black hole, but cannot be entirely sure. A similar ambiguous event was discovered by LIGO and Virgo in August 2019. The mass of the lighter object is puzzling, as scientists expect that the most massive a neutron star can be before collapsing to form a black hole is around 2.5 times the mass of our sun. However, no black holes had been discovered with electromagnetic observations with masses below about 5 solar masses. This led scientists to theorize that stars do not collapse to make black holes in this range. The new gravitational wave observations indicate that these theories may need to be revised.