UNIVERSITY PARK, Pa. — The 2021 Dixie Fire burned over nearly 1 million acres in California and cost $637 million to suppress, making it the largest and most expensive wildfire to contain in state history. Fire history largely determined how severely the wildfire burned, and low-severity fire treatments had the largest impact on reducing the worst effects of the fire, according to a Penn State-led research team.
“We’re in extreme drought conditions over most of California,” said Alan Taylor, professor of geography and ecology at Penn State and principal investigator on the project. “The Dixie Fire burned during the hottest summer in California on record and after two years with half the average precipitation and snowpack. The large amounts of fuels that had accumulated due to over a century of fire exclusion were primed to burn intensely due to these extremely dry conditions. The 2022 fire season may also be difficult in California. April 1 snowpack was only 38% of normal. In this study we wanted to see what factors help keep fire severity down when drought is extreme.”
The researchers examined the Dixie Fire to see how fuel treatments and previous fires affect a wildfire burning under extreme conditions. They gathered Landsat 8 satellite imagery of the fire-damaged area taken immediately after the Dixie Fire and during the same time period in 2020 to create maps of the fire effects on vegetation. They used pixel-level median values from the satellite images and extensive on-the-ground assessments of fire damage to create a composite image for each year. The process allowed them to account for clouds and smoke still in the atmosphere after the fire and in 2020, which also saw a record-setting fire season. They compared the composite images to calculate the severity indices.
“We wanted to perform this analysis as soon as possible after the fire because we need to be learning lessons from megafires like the Dixie Fire as quickly as we can,” said Lucas Haris, a former postdoctoral researcher at Penn State now at the University of Vermont Rubenstein School of Environment and Natural Resources. “The multi-image approach that we took helped to ensure that smoke didn’t influence the calculations because the perfect, smoke-free single image doesn’t exist.”