UNIVERSITY PARK, Pa. — Prescribed fire — a tool increasingly used by forest managers and landowners to combat invasive species, improve wildlife habitat and restore ecosystem health — also could play a role in reducing the abundance of ticks and the transmission of disease pathogens they carry, according to a team of scientists.
For a recently published paper, the researchers reviewed the scientific literature on the effects of fire on forest composition and structure and its influence on ticks and their wildlife hosts. They concluded that prescribed burning can help restore forest habitats to a state less favorable to several species of disease-carrying ticks and could be an effective management tactic for reducing their populations.
The era of fire suppression, which began roughly in the early 1900s and has continued for more than a century, changed the species composition of Eastern forests, creating habitats and microclimates that favored the survival and spread of ticks, noted lead author Michael Gallagher, research ecologist at the Silas Little Experimental Forest, Northern Research Station, U.S. Department of Agriculture Forest Service, New Lisbon, New Jersey.
“Before the arrival of Europeans, Eastern forests were ‘fire-dependent,’ characterized by fire-tolerant species such as pine, oak and chestnut,” Gallagher said. “Frequent low-to-moderate intensity fires would have fostered dry conditions, thinned the understory and diminished layers of leaf litter, which in turn would have created microclimates with lower humidity and higher temperatures.
“These lower-moisture, higher-temperature — or xeric — conditions were likely to limit ticks’ activity, interaction with reservoir hosts and overall populations,” he said.
Since fire has been suppressed and forests have recovered significantly from periods of deforestation caused by logging and agricultural land-clearing, fire-sensitive mesic forest species — those that thrive in and contribute to moister environments — have become dominant, a process known as mesophication, he explained.
“This mesophication of forests has been widely observed throughout the eastern United States,” Gallagher said. “In the absence of fire, these mesic habitats moderate forest temperatures and humidity, promote denser understory growth, and cause greater moisture retention in forest litter. This creates microclimates within the ideal range for tick survival and optimizes conditions for ticks to ‘quest,’ or seek hosts.”